Cohomology and Formal Deformations of Alternative Algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomology and Formal Deformations of Left Alternative Algebras

The purpose of this paper is to introduce an algebraic cohomology and formal deformation theory of left alternative algebras. Connections to some other algebraic structures are given also.

متن کامل

Cohomology and Deformations in Graded Lie Algebras

Introduction. In an address to the Society in 1962, one of the authors gave an outline of the similarities between the deformations of complex-analytic structures on compact manifolds on one hand, and the deformations of associative algebras on the other. The first theory had been stimulated in 1957 by a paper [7] by NijenhuisFrölicher and extensively developed in a series of papers by KodairaS...

متن کامل

Bialgebra Cohomology, Pointed Hopf Algebras, and Deformations

We give explicit formulas for maps in a long exact sequence connecting bialgebra cohomology to Hochschild cohomology. We give a sufficient condition for the connecting homomorphism to be surjective. We apply these results to compute all bialgebra two-cocycles of certain Radford biproducts (bosonizations). These two-cocycles are precisely those associated to the finite dimensional pointed Hopf a...

متن کامل

Formal Deformations of Morphisms of Associative Algebras

The L∞-algebra controlling simultaneous deformations of a morphism of associative algebras and its domain and codomain is described. Isomorphism of the cohomology of this L∞-algebra with the classical construction is shown.

متن کامل

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Generalized Lie Theory and Applications

سال: 2011

ISSN: 1736-5279,1736-4337

DOI: 10.4303/jglta/g110105